Synthetic alpha-Ti Microstructures and Associated Elastic Stiffness and Yield Strength Properties - Extended

By Matthew William Priddy1, Noah Paulson2, David McDowell3, Surya R. Kalidindi2

1. Mississippi State University 2. Georgia Tech 3. Georgia Tech Institute for Materials

Download (HDF5)

Licensed according to this deed.

Category

Datasets

Published on

Abstract

Summary

This is an extended version of a previous data set [Priddy2016_BulkAlphaTi] that was used in a prior study [Paulson2017_BulkProperties] to develop MKS homogenization protocols to predict the bulk properties of polycrystalline microstructures.

Data Set Details

  • 12 distinct alpha-titanium microstructures
    • 100 instantiations (material volume elements or MVEs) per microstructure generated using DREAM.3D [Groeber2014_DREAM3D]
    • each microstructure has a different crystallographic texture inspired by literature [Peters1984_TextureFatigueTi,Wang2003_HexTexture,Lutjering2007_TiBook,Tromans2011_ElasticAnisotropyHCP] and prior experimental characterizations [Smith2016_RankTiHCF]
    • each MVE is 21x21x21 voxels
    • each voxel has a side length of 10e-6 meters
  • Crystal Plasticity Finite Element Method (CPFEM) simulations through ABAQUS UMAT developed by McDowell and co-workers [Smith2013_CyclicPlasticityTi]
    • extraction of elastic stiffness and yield strength
    • displacement-controlled periodic boundary conditions
    • averaged stress tensor in each MVE has only one non-zero component (11, 22 and 33 components associated with x-, y- and z-direction loading, respectively)

The image below displays an example MVE (colored by grain-ID) and a (0001) pole figure for each microstructure

Data Set Format

The data-set is labelled data.hdf5, provided in the hdf5 file format. All relevant data arrays are available in the base directory.

  • euler_X: provides the Euler angles for a microstructure labeled X (i.e. from A to L). The shape of the array is (100, 3, 9261) because there are 100 MVEs per microstructure, 3 Bunge Euler angles per spatial location in an MVE, and 9261 voxels in each MVE. To obtain the full 3-D array use the following python command: >>> euler = euler.reshape((100, 3, 21, 21, 21))
  • modulus_X_bcY: provides the effective elastic stiffness of each MVE predicted through CPFEM simulation for a microstructure labeled X (i.e. from A to L) and boundary condition Y (Y=1 for x-direction, 2 for y-direction and 3 for z-direction loading). The shape of the array is (100).
  • strength_X_bcY: provides the yield strength of each MVE predicted through CPFEM simulation for a microstructure labeled X (i.e. from A to L) and boundary condition Y (Y=1 for x-direction, 2 for y-direction and 3 for z-direction loading). The shape of the array is (100).

References

[Priddy2016_BulkAlphaTi] Matthew Priddy; Noah Paulson (2016), "Synthetic alpha-Ti Microstructures and Associated Elastic Stiffness and Yield Strength Properties," https://matin.gatech.edu/resources/52.

[Paulson2017_BulkProperties] Noah H. Paulson, Matthew W. Priddy, David L. McDowell, Surya R. Kalidindi “Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics”. In: Acta Mater. 129 (2017), pp. 428–438. doi: http://dx.doi.org/10.1016/j.actamat.2017. 03.009.

[Groeber2014_DREAM3D] Michael A. Groeber and Michael A. Jackson. “DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D”. In: Integr. Mater. Manuf. Innov. 3.1 (2014), p. 5. issn: 2193-9772. doi: 10.1186/2193-9772-3-5. url: http://www.immijournal.com/content/3/1/5.

[Peters1984_TextureFatigueTi] M. Peters, A. Gysler, and G. Lütjering. “Influence of texture on fatigue properties of Ti-6Al-4V”. In: Metall. Trans. A 15.8 (1984), pp. 1597–1605. issn:1543-1940. doi:10.1007/BF02657799. url: http://dx.doi.org/10.1007/BF02657799.

[Wang2003_HexTexture] Y N Wang and J C Huang. “Texture analysis in hexagonal materials”. In:Mater. Chem. Phys. 81.1 (2003), pp. 11–26. issn: 0254-0584. doi: http://dx.doi.org/10.1016/S0254- 0584(03)00168- 8. url: http://www.sciencedirect.com/science/article/pii/S0254058403001688.

[Lutjering2007_TiBook] G. Lütjering and J.C. Williams. Titanium. Engineering Materials and Processes. Springer Berlin Heidelberg, 2007. isbn: 9783540730361. url: https://books.google.com/books?id=41EqJFxjA4wC.

[Tromans2011_ElasticAnisotropyHCP] Desmond Tromans. “Elastic anisotropy of HCP metal crystals and polycrystals”. In: Int. J. Res. Rev. Appl. Sci 6.4 (2011), pp. 462–483. url: http://www.arpapress.com/volumes/vol6issue4/ijrras%7B%5C_%7D6%7B%5C_%7D4%7B%5C_%7D14.pdf.

[Smith2016_RankTiHCF] Benjamin D Smith, Donald S Shih, and David L McDowell. “Fatigue hot spot simulation for two Widmanstätten titanium microstructures”. In: Int. J. Fatigue 92, Part 1 (2016), pp. 116–129. issn: 0142-1123. doi: http://dx.doi.org/10.1016/j.ijfatigue.2016.05.002. url: //www.sciencedirect.com/science/article/pii/S0142112316300883.

[Smith2013_CyclicPlasticityTi] B.D. Smith, D. Shih, and D.L. McDowell. “Cyclic Plasticity Experiments and Polycrystal Plasticity Modeling of Three Distinct Ti Alloy Microstructures”. In: Int. J. Plast. (2013). issn: 07496419. doi: 10.1016/j.ijplas.2013.10.004.

Sponsored by

NSF GOALI CMMI-1333083

Cite this work

Researchers should cite this work as follows:

  • Matthew William Priddy; Noah Paulson; David McDowell; Surya R. Kalidindi (2017), "Synthetic alpha-Ti Microstructures and Associated Elastic Stiffness and Yield Strength Properties - Extended," https://matin.gatech.edu/resources/187.

    BibTex | EndNote

Tags