Synthetic alpha-Ti Microstructures and Associated Transition Fatigue Responses

By Matthew William Priddy1, Noah Paulson2, David McDowell3, Surya R. Kalidindi2

1. Mississippi State University 2. Georgia Tech 3. Georgia Tech Institute for Materials

Download (ZIP)

Licensed according to this deed.

Category

Datasets

Published on

Abstract

Summary

This data set consists of over 3600 microstructure volumes and their associated local responses after three cycles of cyclic loading. This loading is expected to result in microstructure responses consistent with the transition regime between high cycle fatigue (HCF) and low cycle fatigue (LCF) [McDowell2007_HCFLCF].

Data Set Details

  • 12 distinct alpha-titanium microstructures
    • 300+ instantiations (material volume elements or MVEs) per microstructure generated using DREAM.3D [Groeber2014_DREAM3D]
    • each microstructure has a different crystallographic texture inspired by literature [Peters1984_TextureFatigueTi,Wang2003_HexTexture,Lutjering2007_TiBook,Tromans2011_ElasticAnisotropyHCP] and prior experimental characterizations [Smith2016_RankTiHCF]
    • each MVE is 21x21x21 voxels
    • each voxel has a side length of 10e-6 meters
  • crystal plasticity finite element method (CPFEM) simulations are performed via ABAQUS UMAT developed by McDowell and co-workers [Smith2013_CyclicPlasticityTi]
    • 3 cycles of fully reversed cyclic loading (R = -1)
    • 0.75% applied strain amplitude (roughly 90-99% of the strain until yielding depending on the MVE)
    • displacement-controlled periodic boundary conditions
    • average stress tensor in each MVE has only one non-zero component (the 11 component associated with x-direction loading)
    • total strain, stress, plastic strain and various fatigue indicator parameters (FIPs) are provided for the minimum of the 3rd loading cycle (where the MVE is under a compressive 0.75% applied strain amplitude)

The image below displays an example MVE (colored by grain-ID) and a (0001) pole figure for each microstructure

Example MVEs and (0001) pole figures for microstructures labeled A through L

Data Set Format

The The data_transition_fatigue.zip file contains 12 folders for microstructures A through L. Each folder contains over 300 individual .vtk files (human readable).

  1. coordinates of the edges of the voxels in each 21x21x21 MVE are defined
  2. grain-IDs are listed for all 9261 voxels
  3. Bunge-Euler angle triplets (in degrees) are listed for all 9261 voxels
  4. raw Fatemi-Socie (F-S) fatigue indicator parameters (FIPs) [McDowell2010_ModelFatigueCrack] are listed for all 9261 voxels
  5. FS-FIPs as computed using the total shear strain range instead of the plastic shear strain range are listed for all 9261 voxels
  6. Lamellar FIPs [Smith2016_RankTiHCF] are listed for all 9261 voxels
  7. Findley parameters [Findley1959_FIP] are listed for all 9261 voxels
  8. raw FS-FIPs after volume averaging (over 8 voxels in a cube) are listed for all 9261 voxels
  9. F-S FIPs as computed from the volume-averaged plastic strain and volume-averaged stress (over 8 voxels in a cube) tensors are listed for all 9261 voxels
  10. The stress tensor components (MPa) are tabulated for all 9261 voxels. The rows identify the voxels and the columns identify the components (11, 12, 13, 21, 22, 23, 31, 32, 33)
  11. The total strain tensor components are tabulated for all 9261 voxels. The rows identify the voxels and the columns identify the components (11, 12, 13, 21, 22, 23, 31, 32, 33)
  12. The plastic strain tensor components are tabulated for all 9261 voxels. The rows identify the voxels and the columns identify the components (11, 12, 13, 21, 22, 23, 31, 32, 33)

References

[McDowell2007_HCFLCF] David L McDowell. “Simulation-based strategies for microstructure-sensitive fatigue modeling". In: Mater. Sci. Eng. A 468-470 (2007), pp. 4-14. issn: 0921-5093. doi: http://dx.doi.org/10.1016/j.msea.2006.08.129. url: http://www.sciencedirect.com/science/article/pii/S092150930700295X.

[Groeber2014_DREAM3D] Michael A. Groeber and Michael A. Jackson. “DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D”. In: Integr. Mater. Manuf. Innov. 3.1 (2014), p. 5. issn: 2193-9772. doi: 10.1186/2193-9772-3-5. url: http://www.immijournal.com/content/3/1/5.

[Peters1984_TextureFatigueTi] M. Peters, A. Gysler, and G. Lütjering. “Influence of texture on fatigue properties of Ti-6Al-4V”. In: Metall. Trans. A 15.8 (1984), pp. 1597–1605. issn:1543-1940. doi:10.1007/BF02657799. url: http://dx.doi.org/10.1007/BF02657799.

[Wang2003_HexTexture] Y N Wang and J C Huang. “Texture analysis in hexagonal materials”. In:Mater. Chem. Phys. 81.1 (2003), pp. 11–26. issn: 0254-0584. doi: http://dx.doi.org/10.1016/S0254- 0584(03)00168- 8. url: http://www.sciencedirect.com/science/article/pii/S0254058403001688.

[Lutjering2007_TiBook] G. Lütjering and J.C. Williams. Titanium. Engineering Materials and Processes. Springer Berlin Heidelberg, 2007. isbn: 9783540730361. url: https://books.google.com/books?id=41EqJFxjA4wC.

[Tromans2011_ElasticAnisotropyHCP] Desmond Tromans. “Elastic anisotropy of HCP metal crystals and polycrystals”. In: Int. J. Res. Rev. Appl. Sci 6.4 (2011), pp. 462–483. url: http://www.arpapress.com/volumes/vol6issue4/ijrras%7B%5C_%7D6%7B%5C_%7D4%7B%5C_%7D14.pdf.

[Smith2016_RankTiHCF] Benjamin D Smith, Donald S Shih, and David L McDowell. “Fatigue hot spot simulation for two Widmanstätten titanium microstructures”. In: Int. J. Fatigue 92, Part 1 (2016), pp. 116–129. issn: 0142-1123. doi: http://dx.doi.org/10.1016/j.ijfatigue.2016.05.002. url: //www.sciencedirect.com/science/article/pii/S0142112316300883.

[Smith2013_CyclicPlasticityTi] B.D. Smith, D. Shih, and D.L. McDowell. “Cyclic Plasticity Experiments and Polycrystal Plasticity Modeling of Three Distinct Ti Alloy Microstructures”. In: Int. J. Plast. (2013). issn: 07496419. doi: 10.1016/j.ijplas.2013.10.004.

[McDowell2010_ModelFatigueCrack] D.L. McDowell and F.P.E. Dunne. Microstructure-sensitive computational modeling of fatigue crack formation". In: Int. J. Fatigue 32.9 (2010), pp. 1521-1542. issn: 0142-1123. doi: http://dx.doi.org/10.1016/j.ijfatigue.2010.01.003. url: http://www.sciencedirect.com/science/article/pii/S0142112310000162.

[Findley1959_FIP] W. N. Findley. “A theory for the effect of mean stress on fatigue of metals under combined torsion and axial loading or bending”. In: Trans. ASME J. Eng. For Industry, 81 (1959), pp. 301-306

Credits

DREAM.3D for synthetic microstructure generation ABAQUS for property evaluations

Sponsored by

NSF GOALI CMMI-1333083

Cite this work

Researchers should cite this work as follows:

  • Matthew William Priddy; Noah Paulson; David McDowell; Surya R. Kalidindi (2017), "Synthetic alpha-Ti Microstructures and Associated Transition Fatigue Responses," https://matin.gatech.edu/resources/191.

    BibTex | EndNote

Tags