Synthetic alpha-Ti Microstructures and Associated High Cycle Fatigue Responses via Crystal Plasticity Finite Element Method Simulations

By Matthew William Priddy1, Noah H. Paulson2, Surya R. Kalidindi2, David McDowell3

1. Mississippi State University 2. Georgia Tech 3. Georgia Tech Institute for Materials

Download (ZIP)

Licensed according to this deed.

Category

Datasets

Published on

Abstract

Summary

This data set consists of 100 microstructure volumes and their associated local responses as computed via crystal plasticity finite element method (CPFEM) simulations. Cyclic loading is performed to obtain microstructure responses consistent with the high cycle fatigue (HCF) regime. These results were employed in prior work [Priddy2016_Dissertation, Priddy2017_LocalizationHCF] to evaluate the success of novel localization protocols intended to accelerate HCF analyses in polycrystalline microstructures.

Data Set Details

  • alpha-titanium microstructure (labelled A [Paulson2017_BulkProperties, Paulson2017_HomogenizationHCF] or beta-annealed [Priddy2016_Dissertation, Priddy2017_LocalizationHCF] in prior work)
    • 100 instantiations (material volume elements or MVEs) per microstructure generated using DREAM.3D [Groeber2014_DREAM3D]
    • crystallographic texture inspired by prior experimental characterization [Smith2016_RankTiHCF]
    • each MVE is 21x21x21 voxels
    • each voxel has a side length of 10e-6 meters
  • simulations performed using CPFEM framework developed by McDowell and co-workers [Smith2013_CyclicPlasticityTi]
    • 3 cycles of fully reversed cyclic loading (R = -1)
    • 0.5% applied strain amplitude (roughly 60-67% of the strain until yielding depending on the MVE)
    • displacement-controlled periodic boundary conditions
    • average strain tensor in each MVE has only one non-zero component (11, 22 and 33 components associated with x-, y- and z-direction loading, respectively)
    • total strain, stress, plastic strain and various fatigue indicator parameters (FIPs) are provided for the minimum and maximum of the 3rd loading cycle

Data Set Format

Each file in “data_CPFEM.zip” is titled “Results_Ti64_Dream3D_#dirLoad_210microns_9261el_AbqInp_PowerLaw_##_data_v2_06.vtk” where # is the loading direction (X, Y or Z) and ## is the simulation number. Each .vtk file contains the following arrays.

  1. coordinates of the edges of the voxels in each 21x21x21 MVE are defined
  2. grain-IDs are listed for all 9261 voxels
  3. Bunge-Euler angle triplets (in degrees) are listed for all 9261 voxels
  4. raw Fatemi-Socie (F-S) fatigue indicator parameters (FIPs) [McDowell2010_ModelFatigueCrack] are listed for all 9261 voxels
  5. FS-FIPs as computed using the total shear strain range instead of the plastic shear strain range are listed for all 9261 voxels
  6. Lamellar FIPs [Smith2016_RankTiHCF] are listed for all 9261 voxels
  7. Findley parameters [Findley1959_FIP] are listed for all 9261 voxels
  8. raw FS-FIPs after volume averaging (over 8 voxels in a cube) are listed for all 9261 voxels
  9. FS-FIPs as computed from the volume-averaged plastic strain and volume-averaged stress (over 8 voxels in a cube) tensors are listed for all 9261 voxels
  10. The stress tensor components (MPa) are tabulated for all 9261 voxels. The rows identify the voxels and the columns identify the components (11, 12, 13, 21, 22, 23, 31, 32, 33)
  11. The total strain tensor components are tabulated for all 9261 voxels. The rows identify the voxels and the columns identify the components (11, 12, 13, 21, 22, 23, 31, 32, 33)
  12. The plastic strain tensor components are tabulated for all 9261 voxels. The rows identify the voxels and the columns identify the components (11, 12, 13, 21, 22, 23, 31, 32, 33)

References

[Priddy2016_Dissertation] M.W. Priddy. “Exploration of forward and inverse protocols for property optimization of Ti-6Al-4V”. PhD thesis. Georgia Institute of Technology, 2016.

[Priddy2017_LocalizationHCF] Matthew W. Priddy, Noah H. Paulson, Surya. R. Kalidindi, David L. McDowell “Strategies for rapid parametric assessment of microstructure sensitive fatigue for HCP systems”. In Prep. (2017).

[Paulson2017_HomogenizationHCF] Noah H. Paulson, Matthew W. Priddy, David L. McDowell, Surya R. Kalidindi “Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures”. In Prep (2017).

[Groeber2014_DREAM3D] Michael A. Groeber and Michael A. Jackson. “DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D”. In: Integr. Mater. Manuf. Innov. 3.1 (2014), p. 5. issn: 2193-9772. doi: 10.1186/2193-9772-3-5. url: http://www.immijournal.com/content/3/1/5.

[Peters1984_TextureFatigueTi] M. Peters, A. Gysler, and G. Lütjering. “Influence of texture on fatigue properties of Ti-6Al-4V”. In: Metall. Trans. A 15.8 (1984), pp. 1597–1605. issn:1543-1940. doi:10.1007/BF02657799. url: http://dx.doi.org/10.1007/BF02657799.

[Wang2003_HexTexture] Y N Wang and J C Huang. “Texture analysis in hexagonal materials”. In:Mater. Chem. Phys. 81.1 (2003), pp. 11–26. issn: 0254-0584. doi: http://dx.doi.org/10.1016/S0254- 0584(03)00168- 8. url: http://www.sciencedirect.com/science/article/pii/S0254058403001688.

[Lutjering2007_TiBook] G. Lütjering and J.C. Williams. Titanium. Engineering Materials and Processes. Springer Berlin Heidelberg, 2007. isbn: 9783540730361. url: https://books.google.com/books?id=41EqJFxjA4wC.

[Tromans2011_ElasticAnisotropyHCP] Desmond Tromans. “Elastic anisotropy of HCP metal crystals and polycrystals”. In: Int. J. Res. Rev. Appl. Sci 6.4 (2011), pp. 462–483. url: http://www.arpapress.com/volumes/vol6issue4/ijrras%7B%5C_%7D6%7B%5C_%7D4%7B%5C_%7D14.pdf.

[Smith2016_RankTiHCF] Benjamin D Smith, Donald S Shih, and David L McDowell. “Fatigue hot spot simulation for two Widmanstätten titanium microstructures”. In: Int. J. Fatigue 92, Part 1 (2016), pp. 116–129. issn: 0142-1123. doi: http://dx.doi.org/10.1016/j.ijfatigue.2016.05.002. url: //www.sciencedirect.com/science/article/pii/S0142112316300883.

[Smith2013_CyclicPlasticityTi] B.D. Smith, D. Shih, and D.L. McDowell. “Cyclic Plasticity Experiments and Polycrystal Plasticity Modeling of Three Distinct Ti Alloy Microstructures”. In: Int. J. Plast. (2013). issn: 07496419. doi: 10.1016/j.ijplas.2013.10.004.

[Paulson2017_BulkProperties] Noah H. Paulson, Matthew W. Priddy, David L. McDowell, Surya R. Kalidindi “Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics”. In: Acta Mater. 129 (2017), pp. 428–438. doi: http://dx.doi.org/10.1016/j.actamat.2017. 03.009.

[McDowell2010_ModelFatigueCrack] D.L. McDowell and F.P.E. Dunne. Microstructure-sensitive computational modeling of fatigue crack formation". In: Int. J. Fatigue 32.9 (2010), pp. 1521-1542. issn: 0142-1123. doi: http://dx.doi.org/10.1016/j.ijfatigue.2010.01.003. url: http://www.sciencedirect.com/science/article/pii/S0142112310000162.

[Findley1959_FIP] W. N. Findley. “A theory for the effect of mean stress on fatigue of metals under combined torsion and axial loading or bending”. In: Trans. ASME J. Eng. For Industry, 81 (1959), pp. 301-306

Credits

DREAM.3D for synthetic microstructure generation ABAQUS for property evaluations

Sponsored by

NSF GOALI CMMI-1333083

Cite this work

Researchers should cite this work as follows:

  • Matthew William Priddy; Noah H. Paulson; Surya R. Kalidindi; David McDowell (2017), "Synthetic alpha-Ti Microstructures and Associated High Cycle Fatigue Responses via Crystal Plasticity Finite Element Method Simulations," https://matin.gatech.edu/resources/207.

    BibTex | EndNote

Tags