Cross-Scale Model Validation With Aleatory and Epistemic Uncertainty

By Blumer, Joel David

Georgia Institute of Technology

Download (PDF)

Licensed according to this deed.

Published on

Abstract

Advisors: Yan Wang, David L. McDowell, Laura P. Swiler

Nearly every decision must be made with a degree of uncertainty regarding the outcome. Decision making based on modeling and simulation predictions needs to incorporate and aggregate uncertain evidence. To validate multiscale simulation models, it may be necessary to consider evidence collected at a length scale that is different from the one at which a model predicts. In addition, traditional methods of uncertainty analysis do not distinguish between two types of uncertainty: uncertainty due to inherently random inputs, and uncertainty due to lack of information about the inputs. This thesis examines and applies a Bayesian approach for model parameter validation that uses generalized interval probability to separate these two types of uncertainty. A generalized interval Bayes' rule (GIBR) is used to combine the evidence and update belief in the validity of parameters. The sensitivity of completeness and soundness for interval range estimation in GIBR is investigated. Several approaches to represent complete ignorance of probabilities' values are tested. The result from the GIBR method is verified using Monte Carlo simulations. The method is first applied to validate the parameter set for a molecular dynamics simulation of defect formation due to radiation. Evidence is supplied by the comparison with physical experiments. Because the simulation includes variables whose effects are not directly observable, an expanded form of GIBR is implemented to incorporate the uncertainty associated with measurement in belief update. In a second example, the proposed method is applied to combining the evidence from two models of crystal plasticity at different length scales.

Cite this work

Researchers should cite this work as follows:

  • Blumer, Joel David (2015), "Cross-Scale Model Validation With Aleatory and Epistemic Uncertainty," https://matin.gatech.edu/resources/3380.

    BibTex | EndNote

Submitter

MATIN Development Team

Tags